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Different types of Bayesians

- Classical Bayesians,

- Modern Parametric Bayesians,

- Subjective Bayesians.

Prior Choice

- Informative prior based on,
- Expert knowledge (subjective),
- Historical data (objective).

Subjective information is based on personal opinions and
feelings rather than facts.
Objective information is based on facts.

- Uninformative prior, representing ignorance,
- Jeffreys prior,
- Based on data in some way (reference prior).
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Classical Bayesians

- The prior is a necessary evil,

- Choose priors that interject the least information possible.
The least = the minimum that should done in a situation.

Modern Parametric Bayesians

- The prior is a useful convenience.

- Choose prior distributions with desirable properties (e.g.:
conjugacy).

- Given a distributional choice, prior parameters are chosen to
interject the least information.

Subjective Bayesians

- The prior is a summary of old beliefs.

- Choose prior distributions based on previous knowledge (either
the results of earlier studies or non-scientific opinion.)
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Modern Parametric Bayesians

Suppose X ∼ N(θ, σ2). Let τ = 1/σ2.

Q: What prior distribution would a Modern Parametric Bayesians choose to
satisfy the demand of convenience?

A: Using the definition π(θ, τ) = π(θ|τ)π(τ),

Prior choice is

θ|τ ∼ N(µ, σ2
0)

τ ∼ Gamma(α, β)

And you know that

θ|τ, x ∼ Normal
τ |x ∼ Gamma
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Example
..
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(Continued)

Q: What prior distribution would a Lazy Modern Parametric Bayesians choose
to satisfy the demand of convenience?

A: Using the fact (suppose you do not want to think too hard about the prior)

π(θ, τ) = π(θ)π(τ),

Prior choice is

θ|τ ∼ N(0, t)
τ ∼ Gamma(α, β)

Obviously, the marginal posterior from this model would be a bit difficult

analytically (in general), but it is easy to implement the Gibbs Sampler.
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The Main Talk

X = (X1, ,Xn) ∼ fθ(x)

θ ∼ π(θ)

θ|x ∼ π(θ|x)

π(θ|x) =
fθ(x)π(θ)

m(x)
,

Where m(x) =
∫

fθ(x)π(θ)dθ is marginal dist. of X .
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NUMERICAL EXAMPLE

Let us concentrate on the following problem.

Suppose X1, ,Xn be i.i.d. B(1, θ), then Y =
∑

Xi ∼ B(n, θ)

Need a prior on θ:

Take θ ∼ Beta(α, β) (Remember that this is a perfectly Subjective choice and anybody can
use their own.) So, θ|y ∼ Beta(y + α, n − y + β).

Under Squared Error Loss (SEL), the Bayes estimate is

δπ(y) =
y + α

n + α+ β

=
n

n + α+ β

y
n
+

α+ β

n + α+ β

α

α+ β

Which is a linear combination of sample mean and prior mean.
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NUMERICAL EXAMPLE

We have a coin. Is this a fair coin? i.e., is θ = 1
2 ?

Suppose you flip it 10 times, and it comes up heads 3 times.

As a frequentist: We use the sample mean, i.e., θ̂ = 3
10 = 0.3.

As a Bayesian: We have to completely specify the prior distribution, i.e., we
have to choose α and β. The Choice again depends on our belief.

Notice that:

- To estimate θ, a Bayesian analyst would put a prior dist. on θ and use the
posterior dist. of θ to draw various conclusions: estimating θ with posterior
mean.

- When there is no strong prior opinion on what θ is, it is desirable to pick a prior
that is NON-INFORMATIVE.
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NUMERICAL EXAMPLE

If we feel strongly that this coin is like any other coin and therefore really
should be a fair coin, we should choose α and β so that the prior puts all its
weight at around 1

2 .

e.g., α = β = 100, then E(θ) = α
α+β = 1

2

and Var(θ) = αβ
(α+β+1)(α+β)2 = 0.0016

Therefore,

δπ(3) =
(3 + 100)

(10 + 100 + 100)
= 0.4905

Clearly for such a strong prior the actual sample almost does not matter:
y = 0 → δπ(0) =

(0+100)
(10+100+100) = 0.476

...
y = 10 → δπ(10) = (10+100)

(10+100+100) = 0.524
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NUMERICAL EXAMPLE

Wrong Conclusion:

Suppose we have never even heard the word coin and have no idea what one
looks like.
Let alone what probability of heads might be?

We could choose α = β = 1 , i.e., a uniform prior distribution
(Really this would indicate our complete lack of knowledge regarding θ, this is called an
uninformative prior.)

As it is seen, in this simple case, it is most intuitive to use the uniform
distribution on [0, 1] as a non-informative prior.
it is non-informative because it says that all possible values of θ are equally likely a priori.
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NUMERICAL EXAMPLE

However, a non-informative prior constructed using Jeffreys’ rule is of the
form

π(θ) ∝ 1√
(θ(1 − (θ)

= θ−
1
2 (1 − θ)−

1
2

= θ
1
2−1(1 − θ)

1
2−1 (1)

Jefferys’ rule is motivated by an invariance argument:

In order for πθ(θ) to be non-informative, it is argued that the parameterization
must not influence the choice of πθ(θ), i.e., if one re-parameterizes the
problem in terms of τ = h(θ) then the rule must pick πτ (τ) = | ∂θ∂τ |πθ(h−1(τ))
as the prior for τ .
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NUMERICAL EXAMPLE

Notice that Jefferys’ rule is to pick πθ(θ) ∝ [I(θ)]
1
2 , as a prior for θ.

As you may realize, Jefferys’ prior for this simple problem can be quite
couter-intuitive.

Under the prior in (1) it appears that some values of θ are more likely than
others (see the figure)

0 0.2 0.4 0.6 0.8 1

2
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θ

f θ

 

 

Beta(0.5,0.5)

Beta(1,1)

Beta(5,5)

Beta(50,50)

Figure: GRAPHs of Beta(0.5, 0.5), Beta(1,1), Beta(5,5) and Beta(50,50).

Therefore, intuitively, it appears that this prior is actually quite informative.
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NUMERICAL EXAMPLE

Q1: What is the goal?

A1: We are going to construct a simple argument and illustrate why the
uniform prior is not necessarily the most non-informative.

Q2: How do the parameters α and β affect the outcome?

A2: For a partial answer, we focus on a particular subfamily of
Beta-distributions with α = β = c, i.e., θ ∼ Beta(c, c).
Then E(θ) = 1

2 and Var(θ) = c2

4c2(2c+1) =
1

4(2c+1) .
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NUMERICAL EXAMPLE

Notice that, then the Bayes estimator is

δπ(Y ) =
Y + c
n + 2c

It is clear from δπ(Y ) that the prior parameter c influences the posterior mean
as if an extra 2c observations, equally split between zero’s (tails) and one’s
(heads), were added to the sample.

Therefore, the larger c is the more influence the prior will have on the
posterior mean.

The Uniform Prior=Beta(1, 1), (c = 1), adds two extra observations.

Jeffreys’ prior= Beta( 1
2 ,

1
2 ), (c = 1

2 ), adds one extra observation.

It is in this sense that Jeffreys’ prior is actually less influential than the
Uniform prior.
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NUMERICAL EXAMPLE

Q3: What Next?

A3: Look at Var(θ) = 1
4(2c+1) which is ↓ in c.

This also says that the larger the prior variance, the less influential the prior
is, which makes intuitive sense:

A larger Prior Variance would normally indicate a relatively weak prior
opinion. In view of this, two extreme cases become quite interesting:

i) c → +∞

ii) c → 0??

AHMAD PARSIAN (University of Tehran) Prior Choice April 2014 15 / 19



NUMERICAL EXAMPLE

Q3: What Next?

A3: Look at Var(θ) = 1
4(2c+1) which is ↓ in c.

This also says that the larger the prior variance, the less influential the prior
is, which makes intuitive sense:

A larger Prior Variance would normally indicate a relatively weak prior
opinion. In view of this, two extreme cases become quite interesting:

i) c → +∞

ii) c → 0??

AHMAD PARSIAN (University of Tehran) Prior Choice April 2014 15 / 19



NUMERICAL EXAMPLE

Q3: What Next?

A3: Look at Var(θ) = 1
4(2c+1) which is ↓ in c.

This also says that the larger the prior variance, the less influential the prior
is, which makes intuitive sense:

A larger Prior Variance would normally indicate a relatively weak prior
opinion. In view of this, two extreme cases become quite interesting:

i) c → +∞

ii) c → 0??

AHMAD PARSIAN (University of Tehran) Prior Choice April 2014 15 / 19



NUMERICAL EXAMPLE

i) If c → +∞, then δπ(Y ) = Y+c
n+2c → 1

2 , which is the same as prior mean
regardless of what the observed outcome are.

In other words, our prior opinion of θ is so strong that it can not be changed
by the observed outcomes.

Also, Var(θ) = 1
4(2c+1) → 0 as c → +∞. This is, again, consistent with our

intuition:

The small prior variance means that one’s prior belief is heavily concentrated
on the point θ = 1

2 , so heavy that the observed outcomes could not alter this
belief in any way!
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2 , so heavy that the observed outcomes could not alter this
belief in any way!
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NUMERICAL EXAMPLE

ii) If c → 0, then δπ(Y ) = Y+c
n+2c → Y

n , which is the same as the least influential
prior in our sub-family would have been the one with c = 0.

Using such a prior, the posterior mean would have been the same as the
MLE, i.e., it would have been entirely determined by the observed outcomes.
But notice that Beta(0, 0)-distribution is not defined.

To understand the behavior of this distribution, we can examine the limiting
distribution as c → 0, i.e.,

B0,0 = lim
c→0

Beta(c, c).

.
Theorem
..
.
. ..

.

.

The limiting distribution B0,0 consists of two equal point masses at 0 and 1.
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NUMERICAL EXAMPLE

Notice that the variance of B0,0 is 1
4 .

Theorem says that the prior distribution Beta(ϵ, ϵ) with arbitrary small ϵ > 0
approaches two point masses at 0 and 1.
Such a prior belief, of course, seems extremely strong, since it says θ is
essentially either 0 or 1.
Intuitively, one would consider such a strong prior belief to be extremely
unreasonable, but this is the prior that would yield a posterior mean as close as
possible to the MLE.
In this sense, the prior Beta(ϵ, ϵ), ϵ > 0, which would otherwise appear strong,
could actually be regarded as the least influential prior in this family.

Theorem states that the limiting distribution B0,0 is B(1, 1
2 )-distribution, which

strictly speaking, is not a member of the Beta Family.
Moreover, if B0,0 is actually used as a prior, then the posterior distribution is not
defined unless all the observations X1, . . . ,Xn are identical.
Hence B0,0 is in itself quite an influential prior, but Beta(ϵ, ϵ), ϵ > 0, is not,
although for arbitrary small ϵ > 0, it encodes essentially the same prior opinion
as B0,0, whose predictive distribution puts half probability on all ones and half on
all zeros.
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THE LESSONS OF THIS DISCUSSION:

It tells us that flat priors, such as Uniform prior, are not always the same
thing as non-informative.

A seemingly informative prior can actually be quite weak in that sense
that it does not influence the posterior opinion very much.

It is clear, in our example, that the MLE is the result of using a weak
prior, whereas the most intuitive non-informative prior, the Uniform prior,
is not as weak or non-informative as one would have thought.

THANKS
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