Prior Choice

AHMAD PARSIAN

SCHOOL OF MATHEMATICS, STATISTICS AND COMPUTER SCIENCE
UNIVERSITY OF TEHRAN

Different types of Bayesians

- Classical Bayesians,
- Modern Parametric Bayesians,
- Subjective Bayesians.

Different types of Bayesians

- Classical Bayesians,
- Modern Parametric Bayesians,
- Subjective Bayesians.

Prior Choice

- Informative prior based on,
 - Expert knowledge (subjective),
 - Historical data (objective).

Subjective information is based on personal opinions and feelings rather than facts.

Objective information is based on facts.

Different types of Bayesians

- Classical Bayesians,
- Modern Parametric Bayesians,
- Subjective Bayesians.

Prior Choice

- Informative prior based on,
 - Expert knowledge (subjective),
 - Historical data (objective).

Subjective information is based on personal opinions and feelings rather than facts.

Objective information is based on facts.

- Uninformative prior, representing ignorance,
 - Jeffreys prior,
 - Based on data in some way (reference prior).

Classical Bayesians

- The prior is a necessary evil,
- Choose priors that interject the least information possible.
 The least = the minimum that should done in a situation.

Classical Bayesians

- The prior is a necessary evil,
- Choose priors that interject the least information possible.

 The least = the minimum that should done in a situation.

Modern Parametric Bayesians

- The prior is a useful convenience.
- Choose prior distributions with desirable properties (e.g.: conjugacy).
- Given a distributional choice, prior parameters are chosen to interject the least information.

Classical Bayesians

- The prior is a necessary evil,
- Choose priors that interject the least information possible.

 The least = the minimum that should done in a situation.

Modern Parametric Bayesians

- The prior is a useful convenience.
- Choose prior distributions with desirable properties (e.g.: conjugacy).
- Given a distributional choice, prior parameters are chosen to interject the least information.

Subjective Bayesians

- The prior is a summary of old beliefs.
- Choose prior distributions based on previous knowledge (either the results of earlier studies or non-scientific opinion.)

Modern Parametric Bayesians

Suppose $X \sim N(\theta, \sigma^2)$. Let $\tau = 1/\sigma^2$.

Modern Parametric Bayesians

Suppose $X \sim N(\theta, \sigma^2)$. Let $\tau = 1/\sigma^2$.

Q: What prior distribution would a Modern Parametric Bayesians choose to satisfy the demand of convenience?

Modern Parametric Bayesians

Suppose $X \sim N(\theta, \sigma^2)$. Let $\tau = 1/\sigma^2$.

Q: What prior distribution would a Modern Parametric Bayesians choose to satisfy the demand of convenience?

A: Using the definition

$$\pi(\theta,\tau) = \pi(\theta|\tau)\pi(\tau),$$

Modern Parametric Bayesians

Suppose $X \sim N(\theta, \sigma^2)$. Let $\tau = 1/\sigma^2$.

Q: What prior distribution would a Modern Parametric Bayesians choose to satisfy the demand of convenience?

A: Using the definition

$$\pi(heta, au)=\pi(heta| au)\pi(au),$$

Prior choice is

$$heta | au \sim N(\mu, \sigma_0^2)$$
 $au \sim Gamma(\alpha, \beta)$

And you know that

$$heta | au, extbf{x} \sim extbf{Normal} \ au | extbf{x} \sim extbf{Gamma}$$

(Continued)

Q: What prior distribution would a Lazy Modern Parametric Bayesians choose to satisfy the demand of convenience?

(Continued)

Q: What prior distribution would a Lazy Modern Parametric Bayesians choose to satisfy the demand of convenience?

A: Using the fact (suppose you do not want to think too hard about the prior)

$$\pi(\theta, \tau) = \pi(\theta)\pi(\tau),$$

(Continued)

Q: What prior distribution would a Lazy Modern Parametric Bayesians choose to satisfy the demand of convenience?

A: Using the fact (suppose you do not want to think too hard about the prior)

$$\pi(\theta,\tau) = \pi(\theta)\pi(\tau),$$

Prior choice is

$$heta | au \sim N(0,t)$$
 $au \sim Gamma(lpha,eta)$

Obviously, the marginal posterior from this model would be a bit difficult analytically (in general), but it is easy to implement the Gibbs Sampler.

The Main Talk

$$X = (X_1, X_n) \sim f_{\theta}(x)$$

The Main Talk

$$X = (X_1, X_n) \sim f_{\theta}(x)$$

$$\theta \sim \pi(\theta)$$

The Main Talk

$$X = (X_1, X_n) \sim f_{\theta}(x)$$

$$\theta \sim \pi(\theta)$$

$$\theta | \mathbf{X} \sim \pi(\theta | \mathbf{X})$$

$$\pi(\theta|x) = \frac{f_{\theta}(x)\pi(\theta)}{m(x)},$$

Where $m(x) = \int f_{\theta}(x)\pi(\theta)d\theta$ is marginal dist. of X.

Let us concentrate on the following problem.

Suppose X_1, X_n be i.i.d. $B(1, \theta)$, then $Y = \sum X_i \sim B(n, \theta)$

Need a prior on θ :

Let us concentrate on the following problem.

Suppose X_1, X_n be i.i.d. $B(1, \theta)$, then $Y = \sum X_i \sim B(n, \theta)$

Need a prior on θ :

Take $\theta \sim Beta(\alpha, \beta)$ (Remember that this is a perfectly Subjective choice and anybody can use their own.) So, $\theta | y \sim Beta(y + \alpha, n - y + \beta)$.

Let us concentrate on the following problem.

Suppose X_1, X_n be i.i.d. $B(1, \theta)$, then $Y = \sum X_i \sim B(n, \theta)$

Need a prior on θ :

Take $\theta \sim Beta(\alpha, \beta)$ (Remember that this is a perfectly Subjective choice and anybody can use their own.) So, $\theta | y \sim Beta(y + \alpha, n - y + \beta)$.

Under Squared Error Loss (SEL), the Bayes estimate is

$$\delta_{\pi}(y) = \frac{y + \alpha}{n + \alpha + \beta}$$
$$= \frac{n}{n + \alpha + \beta} \frac{y}{n} + \frac{\alpha + \beta}{n + \alpha + \beta} \frac{\alpha}{\alpha + \beta}$$

Which is a linear combination of sample mean and prior mean.

We have a coin. Is this a fair coin? i.e., is $\theta = \frac{1}{2}$?

We have a coin. Is this a fair coin? i.e., is $\theta = \frac{1}{2}$?

Suppose you flip it 10 times, and it comes up heads 3 times.

We have a coin. Is this a fair coin? i.e., is $\theta = \frac{1}{2}$?

Suppose you flip it 10 times, and it comes up heads 3 times.

As a frequentist: We use the sample mean, i.e., $\hat{\theta} = \frac{3}{10} = 0.3$.

We have a coin. Is this a fair coin? i.e., is $\theta = \frac{1}{2}$?

Suppose you flip it 10 times, and it comes up heads 3 times.

As a frequentist: We use the sample mean, i.e., $\hat{\theta} = \frac{3}{10} = 0.3$.

As a Bayesian: We have to completely specify the prior distribution, i.e., we have to choose α and β . The Choice again depends on our belief.

Notice that:

- To estimate θ , a Bayesian analyst would put a prior dist. on θ and use the posterior dist. of θ to draw various conclusions: estimating θ with posterior mean.
- When there is no strong prior opinion on what θ is, it is desirable to pick a prior that is NON-INFORMATIVE.

If we feel strongly that this coin is like any other coin and therefore really should be a fair coin, we should choose α and β so that the prior puts all its weight at around $\frac{1}{2}$.

If we feel strongly that this coin is like any other coin and therefore really should be a fair coin, we should choose α and β so that the prior puts all its weight at around $\frac{1}{2}$.

e.g.,
$$\alpha = \beta = 100$$
, then $E(\theta) = \frac{\alpha}{\alpha + \beta} = \frac{1}{2}$

and

$$Var(\theta) = \frac{\alpha\beta}{(\alpha+\beta+1)(\alpha+\beta)^2} = 0.0016$$

Therefore,

$$\delta_{\pi}(3) = \frac{(3+100)}{(10+100+100)} = 0.4905$$

If we feel strongly that this coin is like any other coin and therefore really should be a fair coin, we should choose α and β so that the prior puts all its weight at around $\frac{1}{2}$.

e.g.,
$$\alpha = \beta = 100$$
, then $E(\theta) = \frac{\alpha}{\alpha + \beta} = \frac{1}{2}$

and

$$Var(\theta) = \frac{\alpha\beta}{(\alpha+\beta+1)(\alpha+\beta)^2} = 0.0016$$

Therefore,

$$\delta_{\pi}(3) = \frac{(3+100)}{(10+100+100)} = 0.4905$$

Clearly for such a strong prior the actual sample almost does not matter:

$$y = 0 \rightarrow \delta_{\pi}(0) = \frac{(0+100)}{(10+100+100)} = 0.476$$

:

$$y = 10 \rightarrow \delta_{\pi}(10) = \frac{(10+100)}{(10+100+100)} = 0.524$$

Wrong Conclusion:

Suppose we have never even heard the word coin and have no idea what one looks like.

Let alone what probability of heads might be?

Wrong Conclusion:

Suppose we have never even heard the word coin and have no idea what one looks like.

Let alone what probability of heads might be?

We could choose $\alpha=\beta=1$, i.e., a uniform prior distribution (Really this would indicate our complete lack of knowledge regarding θ , this is called an uninformative prior.)

As it is seen, in this simple case, it is most intuitive to use the uniform distribution on [0, 1] as a non-informative prior.

it is non-informative because it says that all possible values of θ are equally likely a priori.

However, a non-informative prior constructed using Jeffreys' rule is of the form

$$\pi(\theta) \propto \frac{1}{\sqrt{(\theta(1-(\theta))}}$$

$$= \theta^{-\frac{1}{2}}(1-\theta)^{-\frac{1}{2}}$$

$$= \theta^{\frac{1}{2}-1}(1-\theta)^{\frac{1}{2}-1}$$
(1)

However, a non-informative prior constructed using Jeffreys' rule is of the form

$$\pi(\theta) \propto \frac{1}{\sqrt{(\theta(1-(\theta))}}$$

$$= \theta^{-\frac{1}{2}}(1-\theta)^{-\frac{1}{2}}$$

$$= \theta^{\frac{1}{2}-1}(1-\theta)^{\frac{1}{2}-1}$$
(1)

Jefferys' rule is motivated by an invariance argument:

In order for $\pi_{\theta}(\theta)$ to be non-informative, it is argued that the parameterization must not influence the choice of $\pi_{\theta}(\theta)$, i.e., if one re-parameterizes the problem in terms of $\tau = h(\theta)$ then the rule must pick $\pi_{\tau}(\tau) = |\frac{\partial \theta}{\partial \tau}|\pi_{\theta}(h^{-1}(\tau))$ as the prior for τ .

Notice that Jefferys' rule is to pick $\pi_{\theta}(\theta) \propto [I(\theta)]^{\frac{1}{2}}$, as a prior for θ .

As you may realize, Jefferys' prior for this simple problem can be quite couter-intuitive.

Notice that Jefferys' rule is to pick $\pi_{\theta}(\theta) \propto [I(\theta)]^{\frac{1}{2}}$, as a prior for θ .

As you may realize, Jefferys' prior for this simple problem can be quite couter-intuitive.

Under the prior in (1) it appears that some values of θ are more likely than others (see the figure)

Figure: GRAPHs of Beta(0.5, 0.5), Beta(1,1), Beta(5,5) and Beta(50,50).

Therefore, intuitively, it appears that this prior is actually quite informative.

Q1: What is the goal?

Q1: What is the goal?

A1: We are going to construct a simple argument and illustrate why the uniform prior is not necessarily the most non-informative.

Q1: What is the goal?

A1: We are going to construct a simple argument and illustrate why the uniform prior is not necessarily the most non-informative.

Q2: How do the parameters α and β affect the outcome?

Q1: What is the goal?

A1: We are going to construct a simple argument and illustrate why the uniform prior is not necessarily the most non-informative.

Q2: How do the parameters α and β affect the outcome?

A2: For a partial answer, we focus on a particular subfamily of Beta-distributions with $\alpha = \beta = c$, i.e., $\theta \sim Beta(c, c)$.

Then $E(\theta) = \frac{1}{2}$ and $Var(\theta) = \frac{c^2}{4c^2(2c+1)} = \frac{1}{4(2c+1)}$.

Notice that, then the Bayes estimator is

$$\delta_{\pi}(Y) = \frac{Y+c}{n+2c}$$

Notice that, then the Bayes estimator is

$$\delta_{\pi}(Y) = \frac{Y+c}{n+2c}$$

It is clear from $\delta_{\pi}(Y)$ that the prior parameter c influences the posterior mean as if an extra 2c observations, equally split between zero's (tails) and one's (heads), were added to the sample.

Therefore, the larger c is the more influence the prior will have on the posterior mean.

Notice that, then the Bayes estimator is

$$\delta_{\pi}(Y) = \frac{Y+c}{n+2c}$$

It is clear from $\delta_{\pi}(Y)$ that the prior parameter c influences the posterior mean as if an extra 2c observations, equally split between zero's (tails) and one's (heads), were added to the sample.

Therefore, the larger c is the more influence the prior will have on the posterior mean.

The Uniform Prior=Beta(1, 1), (c = 1), adds two extra observations.

Jeffreys' prior= $Beta(\frac{1}{2}, \frac{1}{2})$, $(c = \frac{1}{2})$, adds one extra observation.

It is in this sense that Jeffreys' prior is actually less influential than the Uniform prior.

Q3: What Next?

Q3: What Next?

A3: Look at $Var(\theta) = \frac{1}{4(2c+1)}$ which is \downarrow in c.

This also says that the larger the prior variance, the less influential the prior is, which makes intuitive sense:

Q3: What Next?

A3: Look at $Var(\theta) = \frac{1}{4(2c+1)}$ which is \downarrow in c.

This also says that the larger the prior variance, the less influential the prior is, which makes intuitive sense:

A larger Prior Variance would normally indicate a relatively weak prior opinion. In view of this, two extreme cases become quite interesting:

- i) $c \to +\infty$
- ii) $c \rightarrow 0$??

i) If $c \to +\infty$, then $\delta_{\pi}(Y) = \frac{Y+c}{n+2c} \to \frac{1}{2}$, which is the same as prior mean regardless of what the observed outcome are.

In other words, our prior opinion of θ is so strong that it can not be changed by the observed outcomes.

i) If $c \to +\infty$, then $\delta_{\pi}(Y) = \frac{Y+c}{n+2c} \to \frac{1}{2}$, which is the same as prior mean regardless of what the observed outcome are.

In other words, our prior opinion of θ is so strong that it can not be changed by the observed outcomes.

Also, $Var(\theta) = \frac{1}{4(2c+1)} \to 0$ as $c \to +\infty$. This is, again, consistent with our intuition:

The small prior variance means that one's prior belief is heavily concentrated on the point $\theta = \frac{1}{2}$, so heavy that the observed outcomes could not alter this belief in any way!

ii) If $c \to 0$, then $\delta_{\pi}(Y) = \frac{Y+c}{n+2c} \to \frac{Y}{n}$, which is the same as the least influential prior in our sub-family would have been the one with c = 0.

ii) If $c \to 0$, then $\delta_{\pi}(Y) = \frac{Y+c}{n+2c} \to \frac{Y}{n}$, which is the same as the least influential prior in our sub-family would have been the one with c = 0.

Using such a prior, the posterior mean would have been the same as the MLE, i.e., it would have been entirely determined by the observed outcomes. But notice that Beta(0,0)-distribution is not defined.

ii) If $c \to 0$, then $\delta_{\pi}(Y) = \frac{Y+c}{n+2c} \to \frac{Y}{n}$, which is the same as the least influential prior in our sub-family would have been the one with c = 0.

Using such a prior, the posterior mean would have been the same as the MLE, i.e., it would have been entirely determined by the observed outcomes. But notice that Beta(0,0)-distribution is not defined.

To understand the behavior of this distribution, we can examine the limiting distribution as $c \to 0$, i.e.,

$$B_{0,0} = \lim_{c \to 0} Beta(c, c).$$

Theorem

The limiting distribution $B_{0,0}$ consists of two equal point masses at 0 and 1.

• Notice that the variance of $B_{0,0}$ is $\frac{1}{4}$.

- Notice that the variance of $B_{0,0}$ is $\frac{1}{4}$.
- Theorem says that the prior distribution $Beta(\epsilon, \epsilon)$ with arbitrary small $\epsilon > 0$ approaches two point masses at 0 and 1.

- Notice that the variance of $B_{0,0}$ is $\frac{1}{4}$.
- Theorem says that the prior distribution $Beta(\epsilon, \epsilon)$ with arbitrary small $\epsilon > 0$ approaches two point masses at 0 and 1.
- Such a prior belief, of course, seems extremely strong, since it says θ is essentially either 0 or 1.

- Notice that the variance of $B_{0,0}$ is $\frac{1}{4}$.
- Theorem says that the prior distribution $Beta(\epsilon, \epsilon)$ with arbitrary small $\epsilon > 0$ approaches two point masses at 0 and 1.
- Such a prior belief, of course, seems extremely strong, since it says θ is essentially either 0 or 1.
- Intuitively, one would consider such a strong prior belief to be extremely unreasonable, but this is the prior that would yield a posterior mean as close as possible to the MLE.

- Notice that the variance of $B_{0,0}$ is $\frac{1}{4}$.
- Theorem says that the prior distribution $Beta(\epsilon, \epsilon)$ with arbitrary small $\epsilon > 0$ approaches two point masses at 0 and 1.
- Such a prior belief, of course, seems extremely strong, since it says θ is essentially either 0 or 1.
- Intuitively, one would consider such a strong prior belief to be extremely unreasonable, but this is the prior that would yield a posterior mean as close as possible to the MLE.
- In this sense, the prior $Beta(\epsilon,\epsilon)$, $\epsilon>0$, which would otherwise appear strong, could actually be regarded as the least influential prior in this family.

- Notice that the variance of $B_{0,0}$ is $\frac{1}{4}$.
- Theorem says that the prior distribution $Beta(\epsilon, \epsilon)$ with arbitrary small $\epsilon > 0$ approaches two point masses at 0 and 1.
- Such a prior belief, of course, seems extremely strong, since it says θ is essentially either 0 or 1.
- Intuitively, one would consider such a strong prior belief to be extremely unreasonable, but this is the prior that would yield a posterior mean as close as possible to the MLE.
- In this sense, the prior $Beta(\epsilon, \epsilon)$, $\epsilon > 0$, which would otherwise appear strong, could actually be regarded as the least influential prior in this family.
- Theorem states that the limiting distribution $B_{0,0}$ is $B(1,\frac{1}{2})$ -distribution, which strictly speaking, is not a member of the Beta Family.

- Notice that the variance of $B_{0,0}$ is $\frac{1}{4}$.
- Theorem says that the prior distribution $Beta(\epsilon, \epsilon)$ with arbitrary small $\epsilon > 0$ approaches two point masses at 0 and 1.
- Such a prior belief, of course, seems extremely strong, since it says θ is essentially either 0 or 1.
- Intuitively, one would consider such a strong prior belief to be extremely unreasonable, but this is the prior that would yield a posterior mean as close as possible to the MLE.
- In this sense, the prior $Beta(\epsilon, \epsilon)$, $\epsilon > 0$, which would otherwise appear strong, could actually be regarded as the least influential prior in this family.
- Theorem states that the limiting distribution $B_{0,0}$ is $B(1, \frac{1}{2})$ -distribution, which strictly speaking, is not a member of the Beta Family.
- Moreover, if $B_{0,0}$ is actually used as a prior, then the posterior distribution is not defined unless all the observations X_1, \ldots, X_n are identical.

- Notice that the variance of $B_{0,0}$ is $\frac{1}{4}$.
- Theorem says that the prior distribution $Beta(\epsilon, \epsilon)$ with arbitrary small $\epsilon > 0$ approaches two point masses at 0 and 1.
- Such a prior belief, of course, seems extremely strong, since it says θ is essentially either 0 or 1.
- Intuitively, one would consider such a strong prior belief to be extremely unreasonable, but this is the prior that would yield a posterior mean as close as possible to the MLE.
- In this sense, the prior $Beta(\epsilon, \epsilon)$, $\epsilon > 0$, which would otherwise appear strong, could actually be regarded as the least influential prior in this family.
- Theorem states that the limiting distribution $B_{0,0}$ is $B(1,\frac{1}{2})$ -distribution, which strictly speaking, is not a member of the Beta Family.
- Moreover, if $B_{0,0}$ is actually used as a prior, then the posterior distribution is not defined unless all the observations X_1, \ldots, X_n are identical.
- Hence $B_{0,0}$ is in itself quite an influential prior, but $Beta(\epsilon,\epsilon)$, $\epsilon>0$, is not, although for arbitrary small $\epsilon>0$, it encodes essentially the same prior opinion as $B_{0,0}$, whose predictive distribution puts half probability on all ones and half on all zeros.

• It tells us that flat priors, such as Uniform prior, are not always the same thing as non-informative.

- It tells us that flat priors, such as Uniform prior, are not always the same thing as non-informative.
- A seemingly informative prior can actually be quite weak in that sense that it does not influence the posterior opinion very much.

- It tells us that flat priors, such as Uniform prior, are not always the same thing as non-informative.
- A seemingly informative prior can actually be quite weak in that sense that it does not influence the posterior opinion very much.
- It is clear, in our example, that the MLE is the result of using a weak prior, whereas the most intuitive non-informative prior, the Uniform prior, is not as weak or non-informative as one would have thought.

- It tells us that flat priors, such as Uniform prior, are not always the same thing as non-informative.
- A seemingly informative prior can actually be quite weak in that sense that it does not influence the posterior opinion very much.
- It is clear, in our example, that the MLE is the result of using a weak prior, whereas the most intuitive non-informative prior, the Uniform prior, is not as weak or non-informative as one would have thought.

THANKS